Targeted Metabolomic Approach for Assessing Human Synthetic Cannabinoid Exposure and Pharmacology
Designer synthetic cannabinoids like JWH-018 and AM2201 have unique clinical toxicity. Cytochrome-P450-mediated metabolism of each leads to the generation of pharmacologically active (ω)- and (ω-1)-monohydroxyl metabolites that retain high affinity for cannabinoid type-1 receptors, exhibit Δ9-THC-li...
Saved in:
Published in: | Analytical chemistry (Washington) Vol. 85; no. 19; pp. 9390 - 9399 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
01-10-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Designer synthetic cannabinoids like JWH-018 and AM2201 have unique clinical toxicity. Cytochrome-P450-mediated metabolism of each leads to the generation of pharmacologically active (ω)- and (ω-1)-monohydroxyl metabolites that retain high affinity for cannabinoid type-1 receptors, exhibit Δ9-THC-like effects in rodents, and are conjugated with glucuronic acid prior to excretion in human urine. Previous studies have not measured the contribution of the specific (ω-1)-monohydroxyl enantiomers in human metabolism and toxicity. This study uses a chiral liquid chromatography–tandem mass spectroscopy approach (LC–MS/MS) to quantify each specific enantiomer and other nonchiral, human metabolites of JWH-018 and AM2201 in human urine. The accuracy (average % RE = 18.6) and reproducibility (average CV = 15.8%) of the method resulted in low-level quantification (average LLQ = 0.99 ng/mL) of each metabolite. Comparisons with a previously validated nonchiral method showed strong correlation between the two approaches (average r 2 = 0.89). Pilot data from human urine samples demonstrate enantiospecific excretion patterns. The (S)-isomer of the JWH-018-(ω-1)-monohydroxyl metabolite was predominantly excreted (>87%) in human urine as the glucuronic acid conjugate, whereas the relative abundance of the corresponding AM2201-(ω-1)-metabolite was low (<5%) and did not demonstrate enantiospecificity (approximate 50:50 ratio of each enantiomer). The new chiral method provides a comprehensive, targeted metabolomic approach for studying the human metabolism of JWH-018 and AM2201. Preliminary evaluations of specific enantiomeric contributions support the use of this approach in future studies designed to understand the pharmacokinetic properties of JWH-018 and/or AM2201. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac4024704 |