InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices

Radial core/shell nanowires (NWs) represent an important class of one-dimensional (1D) systems with substantial potential for exploring fundamental materials electronic and photonic properties. Here, we report the rational design and synthesis of InAs/InP core/shell NW heterostructures with quantum-...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 7; no. 10; pp. 3214 - 3218
Main Authors: Jiang, Xiaocheng, Xiong, Qihua, Nam, Sungwoo, Qian, Fang, Li, Yat, Lieber, Charles M
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 01-10-2007
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radial core/shell nanowires (NWs) represent an important class of one-dimensional (1D) systems with substantial potential for exploring fundamental materials electronic and photonic properties. Here, we report the rational design and synthesis of InAs/InP core/shell NW heterostructures with quantum-confined, high-mobility electron carriers. Transmission electron microscopy studies revealed single-crystal InAs cores with epitaxial InP shells 2−3 nm in thickness, and energy-dispersive X-ray spectroscopy analysis further confirmed the composition of the designed heterostructure. Room-temperature electrical measurements on InAs/InP NW field-effect transistors (NWFETs) showed significant improvement in the on-current and transconductance compared to InAs NWFETs fabricated in parallel, with a room-temperature electron mobility, 11 500 cm2/Vs, substantially higher than other synthesized 1D nanostructures. In addition, NWFET devices configured with integral high dielectric constant gate oxide and top-gate structure yielded scaled on-currents up to 3.2 mA/μm, which are larger than values reported for other n-channel FETs. The design and realization of high electron mobility InAs/InP NWs extends our toolbox of nanoscale building blocks and opens up opportunities for fundamental and applied studies of quantum coherent transport and high-speed, low-power nanoelectronic circuits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
DOI:10.1021/nl072024a