Mechanism of Pd/Senphos-Catalyzed trans-Hydroboration of 1,3-Enynes: Experimental and Computational Evidence in Support of the Unusual Outer-Sphere Oxidative Addition Pathway
The reaction mechanism of the Pd/Senphos-catalyzed trans-hydroboration reaction of 1,3-enynes was investigated using various experimental techniques, including deuterium and double crossover labeling experiments, X-ray crystallographic characterization of model reaction intermediates, and reaction p...
Saved in:
Published in: | Journal of organic chemistry Vol. 88; no. 4; pp. 2415 - 2424 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
17-02-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reaction mechanism of the Pd/Senphos-catalyzed trans-hydroboration reaction of 1,3-enynes was investigated using various experimental techniques, including deuterium and double crossover labeling experiments, X-ray crystallographic characterization of model reaction intermediates, and reaction progress kinetic analysis. Our experimental data are in support of an unusual outer-sphere oxidative addition mechanism where the catecholborane serves as a suitable electrophile to activate the Pd0-bound 1,3-enyne substrate to form a Pd-η3-π-allyl species, which has been determined to be the likely resting state of the catalytic cycle. Double crossover labeling of the catecholborane points toward a second role played by the borane as a hydride delivery shuttle. Density functional theory calculations reveal that the rate-limiting transition state of the reaction is the hydride abstraction by the catecholborane shuttle, which is consistent with the experimentally determined rate law: rate = k[enyne]0[borane]1[catalyst]1. The computed activation free energy ΔG ‡ = 17.7 kcal/mol and KIE (k H/k D = 1.3) are also in line with experimental observations. Overall, this work experimentally establishes Lewis acids such as catecholborane as viable electrophilic activators to engage in an outer-sphere oxidative addition reaction and points toward this underutilized mechanism as a general approach to activate unsaturated substrates. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.2c02841 |