Discovery of a Novel Class of Imidazo[1,2‑a]Pyridines with Potent PDGFR Activity and Oral Bioavailability
The in silico construction of a PDGFRβ kinase homology model and ensuing medicinal chemistry guided by molecular modeling, led to the identification of potent, small molecule inhibitors of PDGFR. Subsequent exploration of structure–activity relationships (SAR) led to the incorporation of a constrain...
Saved in:
Published in: | ACS medicinal chemistry letters Vol. 5; no. 1; pp. 78 - 83 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
09-01-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The in silico construction of a PDGFRβ kinase homology model and ensuing medicinal chemistry guided by molecular modeling, led to the identification of potent, small molecule inhibitors of PDGFR. Subsequent exploration of structure–activity relationships (SAR) led to the incorporation of a constrained secondary amine to enhance selectivity. Further refinements led to the integration of a fluorine substituted piperidine, which resulted in significant reduction of P-glycoprotein (Pgp) mediated efflux and improved bioavailability. Compound 28 displayed oral exposure in rodents and had a pronounced effect in a pharmacokinetic–pharmacodynamic (PKPD) assay. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1948-5875 1948-5875 |
DOI: | 10.1021/ml4003953 |