Environmental and human impacts on sediment transport of the largest Asian rivers of Russia and China
The paper deals with comparative summary of sediment loads and particulate trace metals (V, Cr, Co, Cu, Zn, Cd, Pb) transport in the largest Asian rivers of Russia and China. Environmental conditions and human interventions in the selected catchments (Lena, Ob, Enisey, Selenga, Kolyma, Amur, Yellow,...
Saved in:
Published in: | Environmental earth sciences Vol. 77; no. 7; pp. 1 - 14 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-04-2018
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper deals with comparative summary of sediment loads and particulate trace metals (V, Cr, Co, Cu, Zn, Cd, Pb) transport in the largest Asian rivers of Russia and China. Environmental conditions and human interventions in the selected catchments (Lena, Ob, Enisey, Selenga, Kolyma, Amur, Yellow, Yangtze, Pearl) are analyzed with respect to the rate and composition of suspended sediment loads. The paper presents calculations of sediment load changes at the downstream sections of the rivers and new database of the chemical composition of suspended matter which involves all recent studies of the last decade for the sediment geochemistry. The results indicate that fluvial system and its human modifications are the most significant drivers of sediment load. Fluvial erosion in the unconfined channels exerts a significant control on the sediment load changes due to observed permafrost melting. We concluded that construction of reservoirs has the most important influence on land–ocean sediment fluxes in the largest rivers of Asia but plays relatively weak role in heavy metal composition in suspended particulate matter (SPM) due to lowest sedimentation rates of the fine clay particles, which are mostly enriched with heavy metals. The paper also presents novel mapping approaches related to cartographic recognition of the fluvial system and its human modification and sediment transfer processes in the largest Asian rivers of Russia and China, linked with a specific legend. Finally, analysis of uncertainties associated with estimating the SPM composition in the rivers was done with respect to spatial and temporal variability. It was shown that the main error occurs due to incorporation of data only from particular hydrological seasons which usually ignore high flood conditions. |
---|---|
ISSN: | 1866-6280 1866-6299 |
DOI: | 10.1007/s12665-018-7448-9 |