Conditions for Enhancing Chiral Nanophotonics near Achiral Nanoparticles
The interaction of circularly polarized light with matter is the basis for molecular circular dichroism spectroscopy, optical spin manipulation, and optical torques. However, chiroptical effects are usually hampered by weak chiral light–matter interaction. Nanophotonic structures can enhance optical...
Saved in:
Published in: | ACS photonics Vol. 6; no. 10; pp. 2583 - 2589 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
16-10-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The interaction of circularly polarized light with matter is the basis for molecular circular dichroism spectroscopy, optical spin manipulation, and optical torques. However, chiroptical effects are usually hampered by weak chiral light–matter interaction. Nanophotonic structures can enhance optical intensity to boost interactions, but magnifying chiral effects requires that the near field remains chiral in the process. Here, we propose the conditions and limits for enhancing different chiroptical effects near achiral metasurfaces with maximum chirality of the evanescent fields. We illustrate these conditions with arrays of metal and dielectric nanodisks and decompose their distinct electromagnetic metrics into propagating and evanescent Fourier orders. We prove that a nanostructure cannot be universally optimal for different chirality metrics and therefore applications. For example, arrays tailored for enhanced spin excitation with spatially uniform circular polarization destroy circular dichroism. Conversely, we predict a limit of maximum attainable circular dichroism in highly evanescent Fourier orders through a simple relation with the evanescent wavevector and polarization. Our results establish guidelines and constraints for nanophotonic enhancement using evanescent fields in diverse chiroptical applications. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.9b01200 |