Scrolling in Supramolecular Gels: A Designer’s Guide
Gelation by small molecules is a topic of enormous importance in catalysis, nanomaterials, drug delivery, and pharmaceutical crystallization. The mechanism by which gelators self-organize into a fibrous gel network is poorly understood. Herein, we describe the crystal structures and gelation propert...
Saved in:
Published in: | Chemistry of materials Vol. 36; no. 6; pp. 2799 - 2809 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
26-03-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gelation by small molecules is a topic of enormous importance in catalysis, nanomaterials, drug delivery, and pharmaceutical crystallization. The mechanism by which gelators self-organize into a fibrous gel network is poorly understood. Herein, we describe the crystal structures and gelation properties of a library of bis(urea) compounds and show, via molecular dynamics simulations, how gelator aggregation progresses from a continuous pattern of supramolecular motifs to a homogeneous fiber network. Our model suggests that lamellae with asymmetric surfaces scroll into uniform unbranched fibrils, while sheets with symmetric surfaces undergo stacking to form crystals. The self-assembly of asymmetric lamellae is associated with specific molecular features, such as the presence of narrow and flexible end groups with high packing densities, and likely represents a general mechanism for the formation of small-molecule gels. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.3c03013 |