Asymptotic Periodicity of a Higher-Order Difference Equation
We give a complete picture regarding the asymptotic periodicity of positive solutions of the following difference equation: x n = f ( x n − p 1 , … , x n − p k , x n − q 1 , … , x n − q m ) , n ∈ ℕ 0 , where p i , i ∈ { 1 , … , k } , and q j , j ∈ { 1 , … , m } , are natural numbers such that p...
Saved in:
Published in: | Discrete Dynamics in Nature and Society Vol. 2007; pp. 44 - 52 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Hindawi Limiteds
01-01-2007
Hindawi Limited |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give a complete picture regarding the asymptotic periodicity of positive solutions of the following difference equation:
x
n
=
f
(
x
n
−
p
1
,
…
,
x
n
−
p
k
,
x
n
−
q
1
,
…
,
x
n
−
q
m
)
,
n
∈
ℕ
0
, where
p
i
,
i
∈
{
1
,
…
,
k
}
, and
q
j
,
j
∈
{
1
,
…
,
m
}
, are natural numbers such that
p
1
<
p
2
<
⋯
<
p
k
,
q
1
<
q
2
<
⋯
<
q
m
and
gcd
(
p
1
,
…
,
p
k
,
q
1
,
…
,
q
m
)
=
1
, the function
f
∈
C
[
(
0
,
∞
)
k
+
m
,
(
α
,
∞
)
]
,
α
>
0
, is increasing in the first
k
arguments and decreasing in other
m
arguments, there is a decreasing function
g
∈
C
[
(
α
,
∞
)
,
(
α
,
∞
)
]
such that
g
(
g
(
x
)
)
=
x
,
x
∈
(
α
,
∞
)
,
x
=
f
(
x
,
…
,
x
︸
k
,
g
(
x
)
,
…
,
g
(
x
)
︸
m
)
,
x
∈
(
α
,
∞
)
,
lim
x
→
α
+
g
(
x
)
=
+
∞
, and
lim
x
→
+
∞
g
(
x
)
=
α
. It is proved that if all
p
i
,
i
∈
{
1
,
…
,
k
}
, are even and all
q
j
,
j
∈
{
1
,
…
,
m
}
are odd, every positive solution of the equation converges to (not necessarily prime) a periodic solution of period two, otherwise, every positive solution of the equation converges to a unique positive equilibrium. |
---|---|
ISSN: | 1026-0226 1607-887X |
DOI: | 10.1155/2007/13737 |