Carbon Quantum Dots Grafted Antifouling Membranes for Osmotic Power Generation via Pressure-Retarded Osmosis Process

Osmotic power generated by pressure-retarded osmosis (PRO) has attracted global attention as a clean, abundant and renewable energy resource. However, the substrates of PRO membranes are particularly prone to fouling because of their direct contact with various foulants in raw water. This leads to a...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology Vol. 51; no. 23; pp. 14016 - 14023
Main Authors: Zhao, Die Ling, Das, Subhabrata, Chung, Tai-Shung
Format: Journal Article
Language:English
Published: United States American Chemical Society 05-12-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Osmotic power generated by pressure-retarded osmosis (PRO) has attracted global attention as a clean, abundant and renewable energy resource. However, the substrates of PRO membranes are particularly prone to fouling because of their direct contact with various foulants in raw water. This leads to a significant decline in power density and impedes the commercialization of PRO technology. In this work, a facile surface modification method has been developed to obtain a new type of nanoparticle functionalized antifouling PRO membranes. Carbon quantum dots (CQDs), with an average size around 3.2 nm, are fabricated from citric acid via a simple method. Subsequently, they are immobilized onto the polydopamine (PDA) layer grafted on the substrate surface of poly­(ether sulfone) (PES) membranes via covalent bonding. The bacteria diffusion tests show that the CQD modified PRO membranes possess much enhanced antibacterial activity and antibiofouling propensity. The continuous PRO operations at 15 bar also confirm that the CQD modified membranes exhibit a much higher power density (11.0 vs 8.8 W/m2) and water recovery after backwash (94 vs 89%) than the unmodified ones. This study may open up a new avenue in the fabrication of nanostructure functionalized polymeric membranes for wastewater treatment and osmotic power generation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.7b04190