A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index

An ever-increasing trend of extreme rainfall events in South Korea due to climate change is causing shallow landslides and shallow landslide induced debris flows in the mountains that cover 70% of the total land area of the nation. These catastrophic, gravity-driven processes cost the government sev...

Full description

Saved in:
Bibliographic Details
Published in:Engineering geology Vol. 215; pp. 36 - 49
Main Authors: Nedumpallile Vasu, Nikhil, Lee, Seung-Rae, Pradhan, Ananta Man Singh, Kim, Yun-Tae, Kang, Sin- Hang, Lee, Deuk-Hwan
Format: Journal Article
Language:English
Published: Elsevier B.V 19-12-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An ever-increasing trend of extreme rainfall events in South Korea due to climate change is causing shallow landslides and shallow landslide induced debris flows in the mountains that cover 70% of the total land area of the nation. These catastrophic, gravity-driven processes cost the government several billion won in losses, and attendant fatalities, every year. The most common type of landslide observed is the shallow landslide occurring at 1–3m depth, which may mobilize into a catastrophic debris flow. A landslide early warning system encompassing different scale-based stages is used to predict potential areas for both the landslide types. Current study focusing on the first stage landslide hazard assessment at regional or medium scale requires the development of spatially evolving landslide hazard maps for both types of landslides based on the real-time rainfall. However, lack of complete landslide inventory data motivates the development of temporal and spatial models as independent components of the landslide hazard. Most of the existing temporal assessment schemes traditionally rooted in recurrence-based concepts does not consider soil factors and are not suitable to be incorporated in to the landslide early warning system since real-time rainfall cannot be considered. This motivated the development of a new probabilistic temporal model termed the extreme rainfall-induced landslide index. The probabilistic index was developed in Gangwon Province through a logistic regression using four factors; namely, continuous rainfall, 20-days antecedent rainfall, saturated hydraulic conductivity, and storage capacity. The developed model exhibited high area under the curve (AUC) values of 82% and 91% obtained for the training and validation curves, exhibiting good performance of the statistical index. Also, a high performance susceptibility model (training and validation AUC values of 96% and 94%, respectively) was developed using a logistic regression analysis, for Deokjeok-ri Creek, located in Gangwon province. Assuming the independence of the hazard components, a dynamic hazard index (DHI) was established through a joint probability of both the well validated models. The DHI was used to study the evolution of landslide hazard for the July 2006 extreme rainfall-induced landslide events in Deokjeok-ri Creek. •New approach to include spatial and temporal response of slope instability.•Temporal assessment using an index considering rainfall and soil factors.•Database framework for soil parameter estimation over regional or medium scale.•Development of an extreme rainfall-induced landslide index and a dynamic hazard index.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-7952
1872-6917
DOI:10.1016/j.enggeo.2016.10.006