Prediction of Antileishmanial Compounds: General Model, Preparation, and Evaluation of 2‑Acylpyrrole Derivatives

In this work, the SOFT.PTML tool has been used to pre-process a ChEMBL dataset of pre-clinical assays of antileishmanial compound candidates. A comparative study of different ML algorithms, such as logistic regression (LOGR), support vector machine (SVM), and random forests (RF), has shown that the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling Vol. 62; no. 16; pp. 3928 - 3940
Main Authors: Santiago, Carlos, Ortega-Tenezaca, Bernabé, Barbolla, Iratxe, Fundora-Ortiz, Brenda, Arrasate, Sonia, Dea-Ayuela, María Auxiliadora, González-Díaz, Humberto, Sotomayor, Nuria, Lete, Esther
Format: Journal Article
Language:English
Published: United States American Chemical Society 22-08-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, the SOFT.PTML tool has been used to pre-process a ChEMBL dataset of pre-clinical assays of antileishmanial compound candidates. A comparative study of different ML algorithms, such as logistic regression (LOGR), support vector machine (SVM), and random forests (RF), has shown that the IFPTML-LOGR model presents excellent values of specificity and sensitivity (81–98%) in training and validation series. The use of this software has been illustrated with a practical case study focused on a series of 28 derivatives of 2-acylpyrroles 5a,b, obtained through a Pd­(II)-catalyzed C–H radical acylation of pyrroles. Their in vitro leishmanicidal activity against visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis was evaluated finding that compounds 5bc (IC50 = 30.87 μM, SI > 10.17) and 5bd (IC50 = 16.87 μM, SI > 10.67) were approximately 6-fold more selective than the drug of reference (miltefosine) in in vitro assays against L. amazonensis promastigotes. In addition, most of the compounds showed low cytotoxicity, CC50 > 100 μg/mL in J774 cells. Interestingly, the IFPMTL-LOGR model predicts correctly the relative biological activity of these series of acylpyrroles. A computational high-throughput screening (cHTS) study of 2-acylpyrroles 5a,b has been performed calculating >20,700 activity scores vs a large space of 647 assays involving multiple Leishmania species, cell lines, and potential target proteins. Overall, the study demonstrates that the SOFT.PTML all-in-one strategy is useful to obtain IFPTML models in a friendly interface making the work easier and faster than before. The present work also points to 2-acylpyrroles as new lead compounds worthy of further optimization as antileishmanial hits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9596
1549-960X
DOI:10.1021/acs.jcim.2c00731