Gold(I)-Catalyzed Synthesis of 4H‑Benzo[d][1,3]oxazines and Biological Evaluation of Activity in Breast Cancer Cells
The first gold(I)-catalyzed cycloisomerization procedure applied to the synthesis of substituted 4H-benzo[d][1,3]oxazines has been developed starting from N-(2-alkynyl)aryl benzamides. The chemoselective oxygen cyclization via the 6-exo-dig pathway yielded the observed heterocycles in modest to...
Saved in:
Published in: | ACS omega Vol. 7; no. 8; pp. 6944 - 6955 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
01-03-2022
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The first gold(I)-catalyzed cycloisomerization procedure applied to the synthesis of substituted 4H-benzo[d][1,3]oxazines has been developed starting from N-(2-alkynyl)aryl benzamides. The chemoselective oxygen cyclization via the 6-exo-dig pathway yielded the observed heterocycles in modest to good chemical yields under very mild reaction conditions. The obtained oxazines were assayed on the breast cancer (BC)-derived cell lines MCF-7 and HCC1954 with differential biological activity. The newly synthesized 4H-benzo[d][1,3]oxazine compounds showed several degrees of cell proliferation inhibition with a remarkable effect for those compounds having a substituted aryl at C-2 of the molecules. The 4H-benzo[d][1,3]oxazines showed an IC50 ranking from 3.1 to 95 μM in MCF-7 and HCC1954 cells. These compounds represent potential drug candidates for BC treatment. However, additional assays are needed to elucidate their complete effect over the cellular and molecular hallmarks of cancer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.1c06637 |