Dissecting the Effects of DNA Polymerase and Ribonuclease H Inhibitor Combinations on HIV-1 Reverse-Transcriptase Activities
Although HIV-1 reverse transcriptase (RT) DNA polymerase and ribonuclease H (RNase H) activities reside in spatially distinct domains of the enzyme, inhibitors that bind in the RT polymerase domain can affect RNase H activity. We used both gel assays and a real-time FRET assay to analyze the impact...
Saved in:
Published in: | Biochemistry (Easton) Vol. 44; no. 5; pp. 1595 - 1606 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
08-02-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although HIV-1 reverse transcriptase (RT) DNA polymerase and ribonuclease H (RNase H) activities reside in spatially distinct domains of the enzyme, inhibitors that bind in the RT polymerase domain can affect RNase H activity. We used both gel assays and a real-time FRET assay to analyze the impact of three mechanistically distinct RT polymerase inhibitors on RNase H activity in vitro. The nucleoside analogue 3‘-azido-3‘-deoxythymidine triphosphate (AZT-TP) had no effect, whereas the pyrophosphate analogue phosphonoformate (PFA) inhibited RNase H activity in a concentration-dependent manner. Nonnucleoside RT inhibitors (NNRTIs) enhanced RNase H catalysis, but the cleavage products differed substantially for RNA/DNA hybrid substrates of different lengths. A comparison of 61 different RT crystal structures revealed that NNRTI binding opened the angle between the polymerase and RNase H domains of the p66 subunit and reduced the relative motion of the thumb and RNase H regions, suggesting that NNRTI enhancement of RNase H cleavage may result from increased accessibility of the RNase H active site to the RNA/DNA hybrid duplex. We also examined the effects of combining a diketo acid (DKA) RNase H inhibitor with various RT polymerase inhibitors on polymerase-independent RNase H cleavage, RNA-dependent DNA polymerization, and in reverse-transcription assays. Interestingly, although the NNRTI decreased DKA potency in polymerase-independent RNase H assays, NNRTI/DKA combinations were synergistic in inhibiting reverse transcription overall, indicating that regimens incorporating both NNRTI and RNase H inhibitors may be therapeutically beneficial. |
---|---|
Bibliography: | istex:C37288E46CEF7E2844C1EA2F65824A1A2B4DC31E ark:/67375/TPS-6GP69DPW-0 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi0486740 |