The First Targeted Delivery of siRNA in Humans via a Self-Assembling, Cyclodextrin Polymer-Based Nanoparticle: From Concept to Clinic
Experimental therapeutics developed to exploit RNA interference (RNAi) are now in clinical studies. Here, the translation from concept to clinic for the first experimental therapeutic to provide targeted delivery of synthetic, small interfering RNA (siRNA) in humans is described. This targeted, nano...
Saved in:
Published in: | Molecular pharmaceutics Vol. 6; no. 3; pp. 659 - 668 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
01-06-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experimental therapeutics developed to exploit RNA interference (RNAi) are now in clinical studies. Here, the translation from concept to clinic for the first experimental therapeutic to provide targeted delivery of synthetic, small interfering RNA (siRNA) in humans is described. This targeted, nanoparticle formulation of siRNA, denoted as CALAA-01, consists of a cyclodextrin-containing polymer (CDP), a polythethylene glycol (PEG) steric stabilization agent, and human transferrin (Tf) as a targeting ligand for binding to transferrin receptors (TfR) that are typically upregulated on cancer cells. The four component formulation is self-assembled into nanoparticles in the pharmacy and administered intravenously (iv) to patients. The designed features of this experimental therapeutic are described, and their functions illustrated. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1543-8384 1543-8392 |
DOI: | 10.1021/mp900015y |