The 2,6-Diisocyanoazulene Motif: Synthesis and Efficient Mono- and Heterobimetallic Complexation with Controlled Orientation of the Azulenic Dipole
Synthesis of the remarkably air- and thermally stable 2,6-diisocyano-1,3-diethoxycarbonylazulene linker from 2-amino-1,3-diethoxycarbonylazulene in 57% cumulative yield was developed. Incorporation of the ester “arms” in the design of this first diisocyanoazulene bridge permitted fully controlled st...
Saved in:
Published in: | Journal of the American Chemical Society Vol. 128; no. 7; pp. 2300 - 2309 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
22-02-2006
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Synthesis of the remarkably air- and thermally stable 2,6-diisocyano-1,3-diethoxycarbonylazulene linker from 2-amino-1,3-diethoxycarbonylazulene in 57% cumulative yield was developed. Incorporation of the ester “arms” in the design of this first diisocyanoazulene bridge permitted fully controlled stepwise installation and complexation of its isocyano junction groups. The −CO2Et arms in 2,6-diformamido-1,3-diethoxycarbonylazulene effectively suppress the rate of dehydration of its 2-NHCHO end relative to that of the 6-NHCHO end leading to practically exclusive formation of 6-isocyano-2-formamido-1,3-diethoxycarbonylazulene upon treatment of the above diformamide with an equimolar amount of POCl3. This crystallographically characterized 6-isocyano-2-formamidoazulene derivative was employed to access mono- and heterobimetallic complexes of the 2,6-diisocyanoazulene scaffold with controlled orientation of the azulenic dipole. A complete series of monometallic, homobimetallic, and isomeric heterobimetallic ([M] = M(CO)5, M = Cr and/or W) complexes of the 2,6-diisocyanoazulene motif was isolated and studied by a variety of techniques, including X-ray crystallography. The metal-to-bridge charge transfer in mono- and dinuclear adducts of 2,6-diisocyanoazulene, the assignment of which was corroborated by time-dependent density functional theory calculations, occurs at a dramatically lower energy as compared to the analogous systems featuring the 1,4-diisocyanobenzene scaffold. Moreover, the metal-to-diisocyanide charge transfer exhibits a substantially greater red shift upon binucleation of the mononuclear [M(CO)5] adducts of the nonbenzenoid 2,6-diisocyanoazulene linker versus the 1,4-diisocyanobenzene bridge. |
---|---|
Bibliography: | ark:/67375/TPS-XCQR4W7S-0 istex:F4DC034A0C17AF81D9C88674969C5A231F42B8AC ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja053933+ |