Measuring the Ultrafast Spectral Diffusion and Vibronic Coupling Dynamics in CdSe Colloidal Quantum Wells using Two-Dimensional Electronic Spectroscopy
We measure the ultrafast spectral diffusion, vibronic dynamics, and energy relaxation of a CdSe colloidal quantum wells (CQWs) system at room temperature using two-dimensional electronic spectroscopy (2DES). The energy relaxation of light-hole (LH) excitons and hot carriers to heavy-hole (HH) excito...
Saved in:
Published in: | ACS nano Vol. 17; no. 3; pp. 2411 - 2420 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
14-02-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We measure the ultrafast spectral diffusion, vibronic dynamics, and energy relaxation of a CdSe colloidal quantum wells (CQWs) system at room temperature using two-dimensional electronic spectroscopy (2DES). The energy relaxation of light-hole (LH) excitons and hot carriers to heavy-hole (HH) excitons is resolved with a time scale of ∼210 fs. We observe the equilibration dynamics between the spectroscopically accessible HH excitonic state and a dark state with a time scale of ∼160 fs. We use the center line slope analysis to quantify the spectral diffusion dynamics in HH excitons, which contains an apparent sub-200 fs decay together with oscillatory features resolved at 4 and 25 meV. These observations can be explained by the coupling to various lattice phonon modes. We further perform quantum calculations that can replicate and explain the observed dynamics. The 4 meV mode is observed to be in the near-critically damped regime and may be mediating the transition between the bright and dark HH excitons. These findings show that 2DES can provide a comprehensive and detailed characterization of the ultrafast spectral properties in CQWs and similar nanomaterials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.2c09606 |