Numerical investigations of fault-induced seawater circulation in the Seferihisar-Balçova Geothermal system, western Turkey
The Seferihisar-Balçova Geothermal system (SBG), Turkey, is characterized by temperature and hydrochemical anomalies along the faults: thermal waters in northern Balçova are heated meteoric freshwater, whereas the hot springs of the southern Seferihisar region have a strong seawater contribution. Pr...
Saved in:
Published in: | Hydrogeology journal Vol. 20; no. 1; pp. 103 - 118 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-02-2012
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Seferihisar-Balçova Geothermal system (SBG), Turkey, is characterized by temperature and hydrochemical anomalies along the faults: thermal waters in northern Balçova are heated meteoric freshwater, whereas the hot springs of the southern Seferihisar region have a strong seawater contribution. Previous numerical simulations of fluid flow and heat transport indicated that focused upsurge of hot water in faults induces a convective-like flow motion in surrounding units. Salt transport is fully coupled to thermally driven flow to study whether fault-induced convection cells could be responsible for seawater encroachment in the SBG. Isotope data are presented to support the numerical findings. The results show that fault-induced convection cells generate seawater plumes that extend from the seafloor toward the faults. At fault intersections, seawater mixes with rising hot thermal waters. The resulting saline fluids ascend to the surface along the fault, driven by buoyant forces. In Balçova, thick alluvium, minor faults and regional flow prevent ascending salty water from spreading at the surface, whereas the weak recharge flow in the thin alluvium of the southern SBG is not sufficient to flush the ascending hot salty waters. These mechanisms could develop in any faulted geothermal system, with implications for minerals and energy migration in sedimentary basins. |
---|---|
ISSN: | 1431-2174 1435-0157 |
DOI: | 10.1007/s10040-011-0797-z |