Pharmacokinetics and Blood–Brain Barrier Penetration of (+)-Catechin and (−)-Epicatechin in Rats by Microdialysis Sampling Coupled to High-Performance Liquid Chromatography with Chemiluminescence Detection

(+)-Catechin (C) and (−)-epicatechin (EC), as the basic monomer units of flavanols, can be widely found in natural products or medicinal herbs. Recent pharmacological studies have revealed that C and EC exhibit good neuroprotective effects. However, there is little information about pharmacokinetic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry Vol. 60; no. 37; pp. 9377 - 9383
Main Authors: Wu, Liang, Zhang, Qun-Lin, Zhang, Xiao-Yue, Lv, Chen, Li, Jun, Yuan, Ye, Yin, Fang-Xiong
Format: Journal Article
Language:English
Published: Washington, DC American Chemical Society 19-09-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(+)-Catechin (C) and (−)-epicatechin (EC), as the basic monomer units of flavanols, can be widely found in natural products or medicinal herbs. Recent pharmacological studies have revealed that C and EC exhibit good neuroprotective effects. However, there is little information about pharmacokinetic profiles in the brain and in vivo BBB penetration of C and EC. In this paper, an ultrasensitive method using high-performance liquid chromatography (HPLC) with chemiluminescence (CL) detection was developed for the analysis of microdialysis samples. The detection limits for C and EC in Ringer’s solution were 1.0 and 1.2 ng/mL, respectively. The intraday and interday accuracies for C and EC in Ringer’s solution ranged from −3.0 to 4.4%, and the intraday and interday precisions were below 5.2%. The mean in vivo recoveries of C and EC in microdialysis probes were 33.7% and 26.5% in blood while 38.3% and 29.1% in brain. Pharmacokinetic parameters were estimated using the statistical moment method after iv administration (C and EC, 20 mg/kg of body weight) in rats. Brain-to-blood (AUCbrain/AUCblood) distribution ratios were 0.0726 ± 0.0376 for C and 0.1065 ± 0.0531 for EC, indicating that C and EC could pass through the BBB, which is further evidence of their neuroprotective effects.
Bibliography:http://dx.doi.org/10.1021/jf301787f
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8561
1520-5118
DOI:10.1021/jf301787f