Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya
The formation of Antarctic Bottom Water—the cold, dense water that occupies the abyssal layer of the global ocean—is a key process in global ocean circulation. This water mass is formed as dense shelf water sinks to depth. Three regions around Antarctica where this process takes place have been prev...
Saved in:
Published in: | Nature geoscience Vol. 6; no. 3; pp. 235 - 240 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-03-2013
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation of Antarctic Bottom Water—the cold, dense water that occupies the abyssal layer of the global ocean—is a key process in global ocean circulation. This water mass is formed as dense shelf water sinks to depth. Three regions around Antarctica where this process takes place have been previously documented. The presence of another source has been identified in hydrographic and tracer data, although the site of formation is not well constrained. Here we document the formation of dense shelf water in the Cape Darnley polynya (65°–69° E) and its subsequent transformation into bottom water using data from moorings and instrumented elephant seals (
Mirounga leonina
). Unlike the previously identified sources of Antarctic Bottom Water, which require the presence of an ice shelf or a large storage volume, bottom water production at the Cape Darnley polynya is driven primarily by the flux of salt released by sea-ice formation. We estimate that about 0.3–0.7×10
6
m
3
s
−1
of dense shelf water produced by the Cape Darnley polynya is transformed into Antarctic Bottom Water. The transformation of this water mass, which we term Cape Darnley Bottom Water, accounts for 6–13% of the circumpolar total.
Antarctic Bottom Water fills much of the global abyssal ocean, and is known to form in three main sites in the Southern Ocean. Data from instrumented elephant seals and moorings suggest an additional source of bottom-water formation in the Cape Darnley polynya that is driven by sea-ice production. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1752-0894 1752-0908 |
DOI: | 10.1038/ngeo1738 |