Jacobi matrices with absolutely continuous spectrum

Let J be a Jacobi matrix defined in l^2 as Re W, where W is a unilateral weighted shift with nonzero weights \lambda_k such that \lim_k \lambda_k = 1. Define the seqences: \varepsilon_k:= \frac{\lambda_{k-1}}{\lambda_k} -1, \delta_k:= \frac{\lambda_k -1}{\lambda_k}, \eta_k:= 2 \delta_k + \varepsilon...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society Vol. 127; no. 3; pp. 791 - 800
Main Authors: Janas, Jan, Naboko, Serguei
Format: Journal Article
Language:English
Published: American Mathematical Society 01-03-1999
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let J be a Jacobi matrix defined in l^2 as Re W, where W is a unilateral weighted shift with nonzero weights \lambda_k such that \lim_k \lambda_k = 1. Define the seqences: \varepsilon_k:= \frac{\lambda_{k-1}}{\lambda_k} -1, \delta_k:= \frac{\lambda_k -1}{\lambda_k}, \eta_k:= 2 \delta_k + \varepsilon_k. If \varepsilon_k = O(k^{-\alpha}) , \eta_k = O(k^{-\gamma}), \frac{2}{3}< \alpha \leq \gamma, \alpha + \gamma > 3/2 and \gamma > 3/4, then J has an absolutely continuous spectrum covering (-2,2). Moreover, the asymptotics of the solution Ju = \lambda u, \lambda \in \mathbb{R} is also given.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-99-04586-4