Compositional Deep Probabilistic Models of DNA-Encoded Libraries

DNA-encoded library (DEL) has proven to be a powerful tool that utilizes combinatorially constructed small molecules to facilitate highly efficient screening experiments. These selection experiments, involving multiple stages of washing, elution, and identification of potent binders via unique DNA b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling Vol. 64; no. 4; pp. 1123 - 1133
Main Authors: Chen, Benson, Sultan, Mohammad M., Karaletsos, Theofanis
Format: Journal Article
Language:English
Published: United States American Chemical Society 26-02-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:DNA-encoded library (DEL) has proven to be a powerful tool that utilizes combinatorially constructed small molecules to facilitate highly efficient screening experiments. These selection experiments, involving multiple stages of washing, elution, and identification of potent binders via unique DNA barcodes, often generate complex data. This complexity can potentially mask the underlying signals, necessitating the application of computational tools, such as machine learning, to uncover valuable insights. We introduce a compositional deep probabilistic model of DEL data, DEL-Compose, which decomposes molecular representations into their monosynthon, disynthon, and trisynthon building blocks and capitalizes on the inherent hierarchical structure of these molecules by modeling latent reactions between embedded synthons. Additionally, we investigate methods to improve the observation models for DEL count data, such as integrating covariate factors to more effectively account for data noise. Across two popular public benchmark data sets (CA-IX and HRP), our model demonstrates strong performance compared to count baselines, enriches the correct pharmacophores, and offers valuable insights via its intrinsic interpretable structure, thereby providing a robust tool for the analysis of DEL data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9596
1549-960X
1549-960X
DOI:10.1021/acs.jcim.3c01699