Carbon Nanotubes/Carboxymethyl Chitosan/Mineralized Hydroxyapatite Composite Coating on Ti-6Al-4V Alloy for Improved Mechanical and Biological Properties

Hydroxyapatite (HAP) is the most suitable nontoxic, biocompatible material increasingly used for bone implant coatings. However, its brittle nature is a major obstacle for such applications and this leads to the focus on developing composite coatings with the incorporation of various biopolymers and...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research Vol. 53; no. 18; pp. 7660 - 7669
Main Authors: Gopi, D., Nithiya, S., Shinyjoy, E., Rajeswari, D., Kavitha, L.
Format: Journal Article
Language:English
Published: American Chemical Society 07-05-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydroxyapatite (HAP) is the most suitable nontoxic, biocompatible material increasingly used for bone implant coatings. However, its brittle nature is a major obstacle for such applications and this leads to the focus on developing composite coatings with the incorporation of various biopolymers and reinforcing material. In this study, mineral-substituted hydroxyapatite (M-HAP) and carboxymethyl chitosan (CMC), a biopolymer, are made into a composite (CMC/M-HAP) for enhanced biological properties of HAP. Furthermore, carbon nanotubes (CNTs) are incorporated in the composite to improve the mechanical and anticorrosive properties of HAP. The present work investigates the development of CNTs/CMC/M-HAP composite coating on piranha-treated Ti-6Al-4V alloy for improved biological and mechanical properties, which is anticipated to be the most suited alternative material for orthopedic implants.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0888-5885
1520-5045
DOI:10.1021/ie403903q