PART I: Theoretical Site Response Estimation for Microzoning Purposes
-- We estimate the theoretical site response along seven cross sections located in the city of Thessaloniki (Greece). For this purpose the 2-D structural models used are based on the known geometry and the dynamic soil properties derived from borehole measurements and other geophysical techniques. S...
Saved in:
Published in: | Pure and applied geophysics Vol. 161; no. 5-6; pp. 1185 - 1203 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
Springer Nature B.V
01-03-2004
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | -- We estimate the theoretical site response along seven cross sections located in the city of Thessaloniki (Greece). For this purpose the 2-D structural models used are based on the known geometry and the dynamic soil properties derived from borehole measurements and other geophysical techniques. Several double-couple sources have been employed to generate the seismic wavefield, and a hybrid method that combines the modal summation with finite differences, has been deployed to produce synthetic accelerograms to a maximum frequency of 6 Hz for all components of motion. The ratios between the response spectra of signals derived for the 2-D local model and the corresponding spectra of signals derived for the 1-D bedrock reference model at the same site, allow us to estimate the site response due to lateral heterogeneities. We interpret the results in terms of both geological and geometrical features of the models and of the characteristics of the wave propagation. The cases discussed confirm that the geometry and depth of the rock basement, along with the impedance contrast, are responsible for ground amplification phenomena such as edge effects and generation and entrapment of local surface waves. Our analysis also confirms that the peak ground acceleration is not well correlated with damage and that a substantially better estimator for possible damage is the spectral amplification. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0033-4553 1420-9136 |
DOI: | 10.1007/s00024-003-2493-y |