Compressibility and collapse characteristics of arid saline sabkha soils
Arid saline soils are well-distributed over the globe, with a variety of nomenclature. Along the seaboard of the Arabian Gulf, these soils exist widely and are known as “sabkhas”. Despite the cemented and saline characteristics of the sabkha matrix, a recent investigation indicated that flooding the...
Saved in:
Published in: | Engineering geology Vol. 39; no. 3; pp. 185 - 202 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
01-06-1995
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Arid saline soils are well-distributed over the globe, with a variety of nomenclature. Along the seaboard of the Arabian Gulf, these soils exist widely and are known as “sabkhas”. Despite the cemented and saline characteristics of the sabkha matrix, a recent investigation indicated that flooding the saline sabkha with distilled water in the conventional oedometer apparatus was incapable of producing a sudden reduction in volume and/or a significant collapse. This study proposes a modification to the conventional oedometer on undisturbed sabkha specimens to consolidating specimens under a constant head. Tests were, therefore, conducted on undisturbed sabkha specimens to assess their compressibility and collapse potential whereby percolation of water was commenced under two pressures to evaluate the role of sustained pressure on the collapse mechanisms.
Despite the low compressibility of sabkhas, results of these tests indicated that these arid, saline soils possess a high collapse potential attributable primarily to dissolution of sodium chlorides, leaching of calcium ions and soil grain adjustment. The collapse potential increases with an increase in the acting pressure at which percolation of water takes place. In contrast to other typical soils, the collapse of arid, saline soils is not instantaneous but requires sufficient volume of water to percolate in order to enhance the dissolution of the cementing agents. |
---|---|
ISSN: | 0013-7952 1872-6917 |
DOI: | 10.1016/0013-7952(95)00016-9 |