Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry

The overall impact of proteomics on clinical research and its translation has lagged behind expectations. One recognized caveat is the limited size (subject numbers) of (pre)­clinical studies performed at the discovery stage, the findings of which fail to be replicated in larger verification/validat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of proteome research Vol. 15; no. 2; pp. 389 - 399
Main Authors: Cominetti, Ornella, Núñez Galindo, Antonio, Corthésy, John, Oller Moreno, Sergio, Irincheeva, Irina, Valsesia, Armand, Astrup, Arne, Saris, Wim H. M, Hager, Jörg, Kussmann, Martin, Dayon, Loïc
Format: Journal Article
Language:English
Published: United States American Chemical Society 05-02-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The overall impact of proteomics on clinical research and its translation has lagged behind expectations. One recognized caveat is the limited size (subject numbers) of (pre)­clinical studies performed at the discovery stage, the findings of which fail to be replicated in larger verification/validation trials. Compromised study designs and insufficient statistical power are consequences of the to-date still limited capacity of mass spectrometry (MS)-based workflows to handle large numbers of samples in a realistic time frame, while delivering comprehensive proteome coverages. We developed a highly automated proteomic biomarker discovery workflow. Herein, we have applied this approach to analyze 1000 plasma samples from the multicentered human dietary intervention study “DiOGenes”. Study design, sample randomization, tracking, and logistics were the foundations of our large-scale study. We checked the quality of the MS data and provided descriptive statistics. The data set was interrogated for proteins with most stable expression levels in that set of plasma samples. We evaluated standard clinical variables that typically impact forthcoming results and assessed body mass index-associated and gender-specific proteins at two time points. We demonstrate that analyzing a large number of human plasma samples for biomarker discovery with MS using isobaric tagging is feasible, providing robust and consistent biological results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-3893
1535-3907
DOI:10.1021/acs.jproteome.5b00901