The Field-Scale Investigation of the Low Mobility of Drainage Canal Sediments Polluted by Copper in Lowland Area of Croatia

The sedimentation of drainage canals is a common process and its intensity depends on several geographical and hydrological factors. Drainage canal sediments are frequently polluted by heavy metals or other pollutants; they need to be periodically dredged and ultimately, have to be safely disposed o...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) Vol. 13; no. 5; p. 677
Main Authors: Marija Leko Kos, Lidija Tadić
Format: Journal Article
Language:English
Published: MDPI AG 01-03-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sedimentation of drainage canals is a common process and its intensity depends on several geographical and hydrological factors. Drainage canal sediments are frequently polluted by heavy metals or other pollutants; they need to be periodically dredged and ultimately, have to be safely disposed of. Furthermore, pollution in smaller drainages may go undetected because under the Water Framework Directive (Directive 2000/60/EC), catchment areas < 10 km2 do not require monitoring. We investigated the hypothesis that water resources of small sub-catchments exposed to agricultural pollutants accumulate sediment for a longer period (several years) and severely enhance environmental risks. We analyzed the data on sediment mobility in drainage canals for a small lowland catchment in Croatia during 2013–2017. We conducted sediment transport modelling for actual precipitation episodes of a 10-year return period and design precipitation of a 50-year return period. The results indicated that sediments and associated copper pollution persist at the canal bottom for several years, which increases the risk of polluting groundwater and the environment in general. Only copper present at the maximum downstream section of the canal has the possibility of moving to the recipient stream and would only be detected in catchment areas bigger than 10 km2. We proved that smaller water bodies evaluated according to monitoring standards prescribed for the closest larger water can enhance environmental risks.
ISSN:2073-4441
DOI:10.3390/w13050677