Cationic Copper(II) Porphyrins Intercalate into Domains of Double-Stranded RNA

A cationic, copper(II)-containing ligand, derived from bulky 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin, Cu(T4), and two sterically friendlier forms, [trans-5,15-di(N-methylpyridinium-4-yl)porphyrinato]copper(II), Cu(tD4), and [cis-5,10-di(N-methylpyridinium-4-yl)porphyrinato]copper(II),...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) Vol. 51; no. 38; pp. 7496 - 7505
Main Authors: Briggs, Breeze N, Gaier, Abby J, Fanwick, Phillip E, Dogutan, Dilek K, McMillin, David R
Format: Journal Article
Language:English
Published: United States American Chemical Society 25-09-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A cationic, copper(II)-containing ligand, derived from bulky 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin, Cu(T4), and two sterically friendlier forms, [trans-5,15-di(N-methylpyridinium-4-yl)porphyrinato]copper(II), Cu(tD4), and [cis-5,10-di(N-methylpyridinium-4-yl)porphyrinato]copper(II), Cu(cD4), bind to DNA and RNA hosts. Six hairpin-forming RNA 18-mer sequences and two previously studied DNA analogues serve as convenient binding platforms of programmable base composition. A crystal structure shows that the copper center of Cu(tD4) is four-coordinate, establishing compatibility with intercalative binding as well as susceptibility to solvent-induced emission quenching. From the hypochromic responses and the induced emission intensities obtained with all three porphyrins, it is clear that internalization into the RNA host occurs, irrespective of the base pair composition. Further analysis reveals that the porphyrins intercalate into the double-stranded stem domains. Subtle geometric and/or electronic aspects of the binding account for the signs of induced circular dichroic signals and splitting of the Soret band of Cu(tD4).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-2960
1520-4995
DOI:10.1021/bi300828z