Rapid Li Ion Dynamics in the Interfacial Regions of Nanocrystalline Solids

Diffusive processes are ubiquitous in nature. In solid state physics, metallurgy and materials science the diffusivity of ions govern the functionality of many devices such as sensors or batteries. Motional processes on surfaces, across interfaces or through membranes can be quite different to that...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters Vol. 9; no. 8; pp. 2093 - 2097
Main Authors: Breuer, S, Uitz, M, Wilkening, H. M. R
Format: Journal Article
Language:English
Published: United States American Chemical Society 19-04-2018
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diffusive processes are ubiquitous in nature. In solid state physics, metallurgy and materials science the diffusivity of ions govern the functionality of many devices such as sensors or batteries. Motional processes on surfaces, across interfaces or through membranes can be quite different to that in the bulk. A direct, quantitative description of such local diffusion processes is, however, rare. Here, we took advantage of 7Li longitudinal nuclear magnetic relaxation to study, on the atomic length scale, the diffusive motion of lithium spins in the interfacial regions of nanocrystalline, orthorhombic LiBH4. Magnetization transients and free induction decays revealed a fast subset of Li ions having access to surface pathways that offer activation barriers (0.18 eV) much lower than those in the crystalline bulk regions (0.55 eV). These observations make orthorhombic borohydride a new nanostructured model system to study disorder-induced enhancements in interfacial diffusion processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.8b00418