Selective Oxidation of 2‑Hydroxypropyl Ethers of Cellulose and Dextran: Simple and Efficient Introduction of Versatile Ketone Groups to Polysaccharides
Oxidation of polysaccharides has been a useful approach to new materials. However, selectivity in oxidation of polysaccharide macromolecular polyols remains a significant challenge with few methods for the synthesis of ketone-substituted polysaccharides. We report here a selective, practical, and ef...
Saved in:
Published in: | Biomacromolecules Vol. 21; no. 12; pp. 4835 - 4849 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
14-12-2020
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxidation of polysaccharides has been a useful approach to new materials. However, selectivity in oxidation of polysaccharide macromolecular polyols remains a significant challenge with few methods for the synthesis of ketone-substituted polysaccharides. We report here a selective, practical, and efficient process, beginning with 2-hydroxypropyl ethers of polysaccharides that are simple and economical to prepare. We demonstrate this approach herein using commercial 2-hydroxypropyl cellulose (HPC) and 2-hydroxypropyl dextran (HPD) that we prepared. We oxidize the terminal, secondary alcohols of the oligo(2-hydroxypropyl) substituents with sodium hypochlorite so that the product has an oligo(2-hydroxypropyl) side chains terminated by a ketone. We demonstrate the high chemo- and regioselectivity of this oxidation by analytical methods including hydrolysis to monosaccharides and mass spectrometry of the resulting mixture. We provide an initial demonstration of the potential utility of these keto-polysaccharides by reacting Ox-HPC with primary amines to form Schiff base imines, providing proactive polymers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/acs.biomac.0c01045 |