Land subsidence mapping and monitoring using modified persistent scatterer interferometric synthetic aperture radar in Jharia Coalfield, India
Subsidence has been adversely affecting Jharia Coalfield (JCF) for the last few decades. This study attempts to show the feasibility of the modified Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique with C-band SAR data to investigate the slow surface deformation cau...
Saved in:
Published in: | Journal of Earth System Science Vol. 129; no. 1; p. 146 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New Delhi
Springer India
01-12-2020
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Subsidence has been adversely affecting Jharia Coalfield (JCF) for the last few decades. This study attempts to show the feasibility of the modified Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique with C-band SAR data to investigate the slow surface deformation caused by coal mine fire and underground mining activities in JCF. Also, a multi-temporal analysis of SAR images of ENVISAT ASAR has been carried out for monitoring and mapping of temporal land subsidence of the area under study. The modified PSI technique has proven its ability to detect land subsidence over the vegetated and rural areas. It also resolves low spatial density of permanent scatterers by considering partially correlated scatterers as permanent scatterers (PSs) and extracting information from these PSs. The study has been concentrated towards detecting continuous slow rate subsidence of five major sites of JCF. The maximum rate of slow deformation among all sites is recorded as 29 mm/year with a cumulative subsidence value of 90 mm. Field validation of subsidence results obtained through PS-InSAR is correlated with the previously published report and the master plan of JCF, showing subsidence locations. Conclusively, the adopted methodology is practically feasible for detection, monitoring and mapping of slow deformation using C-band SAR data in coal mine area. |
---|---|
ISSN: | 2347-4327 0253-4126 0973-774X |
DOI: | 10.1007/s12040-020-01413-0 |