A General System for Studying Protein−Protein Interactions in Gram-Negative Bacteria
One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using...
Saved in:
Published in: | Journal of proteome research Vol. 7; no. 8; pp. 3319 - 3328 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
01-08-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein−protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged “bait” proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid and chromosomally encoded affinity-tagged fusion proteins expressed in a model organism, Escherichia coli. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 DE-AC05-00OR22725 USDOE Office of Science (SC) |
ISSN: | 1535-3893 1535-3907 |
DOI: | 10.1021/pr8001832 |