Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: The Eocene Dongying Depression, Bohai Bay Basin, east China

Sediment routing in deep-water settings can be significantly different in lacustrine basins from their well-studied marine counterparts, which has been largely overlooked during the past decades. The seismically well-imaged lacustrine clinothems in the Eocene Dongying Depression provide a good oppor...

Full description

Saved in:
Bibliographic Details
Published in:Marine and petroleum geology Vol. 114; p. 104197
Main Authors: Liu, Jianping, Xian, Benzhong, Ji, Youliang, Gong, Chenglin, Wang, Junhui, Wang, Zhen, Chen, Peng, Song, Delin, Wei, Wenzong, Zhang, Ximeng, Dou, Luxing
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-04-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sediment routing in deep-water settings can be significantly different in lacustrine basins from their well-studied marine counterparts, which has been largely overlooked during the past decades. The seismically well-imaged lacustrine clinothems in the Eocene Dongying Depression provide a good opportunity to bridge the deep-water sediment partitioning with clinothem architecture and shelf-edge trajectories, which have been studied through the integration of 3D seismic data and well-logging data. In the study area, the Eocene delta-complexes are architecturally manifested as alternating aggradation dominated (AC) and progradation dominated clinothems (PC). The Eocene Dongying clinothem architecture has been documented in terms of shelf–edge trajectory angle (θsht), edge-to-toe distance (ETT), aggradation height (Ah), progradation distance (Pd) and maximum foreset angle (γmfa). Aggradation dominated clinothems are characterized by ascending shelf-edge trajectories with thick and widespread sand-prone bottomsets, suggesting higher efficiency of sediment delivery into the outlying lake floor. Progradation dominated clinothems, in contrast, are characterized by flat to slightly descending trajectories and generally by a lack of bottomsets. Alternations of rising and flat to slightly descending trajectories accompanied with different clinothem types probably indicate frequent relative lake level changes (on time-scales of 100s of kyr). Further analysis of seismic images and extensive well-logs suggest the distal aggradational bottomsets are generally consist of sub-lacustrine channel-lobe systems, whereas sediment slide, slump blocks occur in slope to slope toe areas of progradation dominated clinothems, which indicate varied processes of deep-water sediment transport associated with different clinothem types and shelf-edge trajectories. Lake-level, sediment supply, water salinity and density change induced by humid-arid climate cycle are suggested to be main factors controlling clinothems stacking pattern and sediment dispersal into deep-lacustrine. Humid climate are considered to be related with strongly aggradational clinothems, during which sediment can be directly transported to the distant bottomset areas due to increased sediment concentration and energy in river discharge. Whereas during dry periods, progradation dominated clinothems start to build under stillstand or falling lake level conditions, sediment generally accumulates at river mouth and collapses due to sediment overload or fault activity. Therefore, a relationship between deep-lacustrine depositional process and climatic signature was established which may provide new thoughts in both the study of deep-water sequences and deep-water exploration in lacustrine basins. •Alternation of two different growth styles of lacustrine clinothems is identified.•Strongly aggradational clinothems suggest increased deep-water sediment delivery.•Strongly progradational clinothems suggest limited deep-water sediment delivery.•Climate-cycle controls clinothem patterns and associated deep-water processes.
ISSN:0264-8172
1873-4073
DOI:10.1016/j.marpetgeo.2019.104197