Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction
Oxide-derived copper (OD-Cu) electrodes exhibit higher activity than pristine copper during the carbon dioxide reduction reaction (CO2RR) and higher selectivity toward ethylene. The presence of residual subsurface oxygen in OD-Cu has been proposed to be responsible for such improvements, although it...
Saved in:
Published in: | Journal of physical chemistry. C Vol. 121; no. 45; pp. 25003 - 25009 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxide-derived copper (OD-Cu) electrodes exhibit higher activity than pristine copper during the carbon dioxide reduction reaction (CO2RR) and higher selectivity toward ethylene. The presence of residual subsurface oxygen in OD-Cu has been proposed to be responsible for such improvements, although its stability under the reductive CO2RR conditions remains unclear. This work sheds light on the nature and stability of subsurface oxygen. Our spectroscopic results show that oxygen is primarily concentrated in an amorphous 1–2 nm thick layer within the Cu subsurface, confirming that subsurface oxygen is stable during CO2RR for up to 1 h at −1.15 V vs RHE. Besides, it is associated with a high density of defects in the OD-Cu structure. We propose that both low coordination of the amorphous OD-Cu surface and the presence of subsurface oxygen that withdraws charge from the copper sp- and d-bands might selectively enhance the binding energy of CO. |
---|---|
Bibliography: | USDOE AC02-76SF00515 |
ISSN: | 1932-7447 1932-7455 1932-7455 |
DOI: | 10.1021/acs.jpcc.7b08278 |