Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution
The size-controlled synthesis of ultrasmall metal-based catalysts is of vital importance for chemical conversion technologies. Here, a cage-confinement pyrolysis strategy is presented for the synthesis of ultrasmall tungsten carbide nanoclusters/nanoparticles. An RHO type zeolitic metal azolate fram...
Saved in:
Published in: | Journal of the American Chemical Society Vol. 139; no. 15; pp. 5285 - 5288 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
19-04-2017
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The size-controlled synthesis of ultrasmall metal-based catalysts is of vital importance for chemical conversion technologies. Here, a cage-confinement pyrolysis strategy is presented for the synthesis of ultrasmall tungsten carbide nanoclusters/nanoparticles. An RHO type zeolitic metal azolate framework MAF-6, possessing large nanocages and small apertures, is selected to confine the metal source W(CO)6. High temperature pyrolysis gives tungsten carbide nanoclusters/nanoparticles with sizes ca. 2 nm, which can serve as an excellent electrocatalyst for the hydrogen evolution reaction. In 0.5 M H2SO4, it exhibits very low overpotential of 51 mV at 10 mA cm–2 and Tafel slope of 49 mV per decade, as well as the highest exchange current density of 2.4 mA cm–2 among all tungsten/molybdenum-based catalysts. Moreover, it also shows excellent stability and antiaggregation behavior after long-term electrolytic process. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b00165 |