A Benzodithiophene-Based Novel Electron Transport Layer for a Highly Efficient Polymer Solar Cell
We designed and synthesized a novel conjugated polyelectrolyte (CPE), poly{3-[2-[4,8-bis(2-ethyl-hexyloxy)-6-methyl-1,5-dithia-s-indacen-2-yl]-9-(3-dimethylamino-propyl)-7-methyl-9H-fluoren-9-yl]-propyl}-dimethyl-amine (PBN). We employed PBN as an electron-transporting layer on a ZnO layer and con...
Saved in:
Published in: | ACS applied materials & interfaces Vol. 6; no. 18; pp. 15875 - 15880 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
24-09-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We designed and synthesized a novel conjugated polyelectrolyte (CPE), poly{3-[2-[4,8-bis(2-ethyl-hexyloxy)-6-methyl-1,5-dithia-s-indacen-2-yl]-9-(3-dimethylamino-propyl)-7-methyl-9H-fluoren-9-yl]-propyl}-dimethyl-amine (PBN). We employed PBN as an electron-transporting layer on a ZnO layer and constructed a highly efficient, inverted structure device consisting of a mixture of poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) and PC70BM, achieving a high power conversion of up to 8.6%, constituting a 21.1% improvement over the control device performance (7.1%) prepared without a PBN layer. This result was ascribed to the reduced interfacial resistance and the improved charge transport and collection through the PBN electron transport layer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am503419r |