Reactive Molecular Dynamics Simulations of Shock Through a Single Crystal of Pentaerythritol Tetranitrate
Large-scale molecular dynamics simulations and the reactive force field ReaxFF were used to study shock-induced initiation in crystalline pentaerythritol tetranitrate (PETN). In the calculations, a PETN single crystal was impacted against a wall, driving a shockwave back through the crystal in the [...
Saved in:
Published in: | The journal of physical chemistry. B Vol. 113; no. 40; pp. 13142 - 13151 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
08-10-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large-scale molecular dynamics simulations and the reactive force field ReaxFF were used to study shock-induced initiation in crystalline pentaerythritol tetranitrate (PETN). In the calculations, a PETN single crystal was impacted against a wall, driving a shockwave back through the crystal in the [100] direction. Two impact speeds (4 and 3 km/s) were used to compare strong and moderate shock behavior. The primary difference between the two shock strengths is the time required to exhibit the same qualitative behaviors with the lower impact speed lagging behind the faster impact speed. For both systems, the shock velocity exhibits an initial deceleration due to onset of endothermic reactions followed by acceleration due to the onset of exothermic reactions. At long times, the shock velocity reaches a steady value. After the initial deceleration period, peaks are observed in the profiles of the density and axial stress with the strongly shocked system having sharp peaks while the weakly shocked system developed broad peaks due to the slower shock velocity acceleration. The dominant initiation reactions in both systems lead to the formation of NO2 with lesser quantities of NO3 and formaldehyde also produced. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp9016695 |