A Peripheral-Free True Random Number Generator Based on Integrated Circuits Enabled by Atomically Thin Two-Dimensional Materials

A true random number generator (TRNG) is essential to ensure information security for Internet of Things (IoT) edge devices. While pseudorandom number generators (PRNGs) have been instrumental, their deterministic nature limits their application in security-sensitive scenarios. In contrast, hardware...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano Vol. 17; no. 17; pp. 16817 - 16826
Main Authors: Ravichandran, Harikrishnan, Sen, Dipanjan, Wali, Akshay, Schranghamer, Thomas F., Trainor, Nicholas, Redwing, Joan M., Ray, Biswajit, Das, Saptarshi
Format: Journal Article
Language:English
Published: American Chemical Society 12-09-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A true random number generator (TRNG) is essential to ensure information security for Internet of Things (IoT) edge devices. While pseudorandom number generators (PRNGs) have been instrumental, their deterministic nature limits their application in security-sensitive scenarios. In contrast, hardware-based TRNGs derived from physically unpredictable processes offer greater reliability. This study demonstrates a peripheral-free TRNG utilizing two cascaded three-stage inverters (TSIs) in conjunction with an XOR gate composed of monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) by exploiting the stochastic charge trapping and detrapping phenomena at and/or near the MoS2/dielectric interface. The entropy source passes the NIST SP800-90B tests with a minimum normalized entropy of 0.8780, while the generated bits pass the NIST SP800-22 randomness tests without any postprocessing. Moreover, the keys generated using these random bits are uncorrelated with near-ideal entropy, bit uniformity, and Hamming distances, exhibiting resilience against machine learning (ML) attacks, temperature variations, and supply bias fluctuations with a frugal energy expenditure of 30 pJ/bit. This approach offers an advantageous alternative to conventional silicon, memristive, and nanomaterial-based TRNGs as it obviates the need for extensive peripherals while harnessing the potential of atomically thin 2D materials in developing low-power TRNGs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.3c03581