Lie algebras of cohomological codimension one
We show that if \mathfrak{g} is a finite dimensional real Lie algebra, then \mathfrak{g} has cohomological dimension cd(\mathfrak{g})=\dim (\mathfrak{g})-1 if and only if \mathfrak{g} is a unimodular extension of the two-dimensional non-Abelian Lie algebra \mathfrak{aff}.
Saved in:
Published in: | Proceedings of the American Mathematical Society Vol. 127; no. 3; pp. 709 - 714 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
American Mathematical Society
01-03-1999
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that if \mathfrak{g} is a finite dimensional real Lie algebra, then \mathfrak{g} has cohomological dimension cd(\mathfrak{g})=\dim (\mathfrak{g})-1 if and only if \mathfrak{g} is a unimodular extension of the two-dimensional non-Abelian Lie algebra \mathfrak{aff}. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-99-04562-1 |