Quadruple Hydrogen Bonding Supramolecular Elastomers for Melt Extrusion Additive Manufacturing

This manuscript describes the versatility of highly directional, noncovalent interactions, i.e., quadruple hydrogen bonding (QHB), to afford novel polyurea segmented supramolecular polymers for melt extrusion three-dimensional (3D) printing processes. The molecular design of the polyurea elastomers...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces Vol. 12; no. 28; pp. 32006 - 32016
Main Authors: Chen, Xi, Zawaski, Callie E, Spiering, Glenn A, Liu, Boer, Orsino, Christina M, Moore, Robert B, Williams, Christopher B, Long, Timothy E
Format: Journal Article
Language:English
Published: American Chemical Society 15-07-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This manuscript describes the versatility of highly directional, noncovalent interactions, i.e., quadruple hydrogen bonding (QHB), to afford novel polyurea segmented supramolecular polymers for melt extrusion three-dimensional (3D) printing processes. The molecular design of the polyurea elastomers features (1) flexible polyether segments and relatively weak urea hydrogen-bonding sites in the soft segments to provide elasticity and toughness, and (2) strong ureido-cytosine (UCyt) QHB in the hard segments to impart enhanced mechanical integrity. The resulting polyureas were readily compression-molded into mechanically-robust, transparent, and creasable films. Optimization of polyurea composition offered a rare combination of high tensile strength (95 MPa), tensile elongation (788% strain), and toughness (94 MJ/m3), which are superior to a commercially available Ninjaflex elastomer. The incorporation of QHB facilitated melt processability, where hydrogen bonding dissociation provided low viscosities at printing temperatures. During cooling, directional self-assembly of UCyt QHB facilitated the solidification process and contributed to part fidelity with the formation of a robust physical network. The printed objects displayed high layer fidelity, smooth surfaces, minimal warpage, and complex geometries. The presence of highly directional QHB effectively diminished mechanical anisotropy, and the printed samples exhibited comparable Young’s moduli along (x–y direction, 0°) and perpendicular to (z-direction, 90°) the layer direction. Remarkably, the printed samples exhibited ultimate tensile strains approaching 500% in the z-direction prior to failure, which was indicative of improved interlayer adhesion. Thus, this design paradigm, which is demonstrated for novel polyurea copolymers, suggests the potential of supramolecular polymers with enhanced mechanical performance, melt processability, recyclability, and improved interlayer adhesion for melt extrusion additive manufacturing processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c08958