Reversible Isothermal Twist–Bend Nematic–Nematic Phase Transition Driven by the Photoisomerization of an Azobenzene-Based Nonsymmetric Liquid Crystal Dimer

The liquid crystal nonsymmetric dimer, 1-(4-butoxyazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl) hexane (CB6OABOBu), shows enantiotropic twist–bend nematic, NTB, and nematic, N, phases. The NTB phase has been confirmed using polarized light microscopy, freeze fracture transmission electron microscop...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society Vol. 138; no. 16; pp. 5283 - 5289
Main Authors: Paterson, Daniel A, Xiang, Jie, Singh, Gautam, Walker, Rebecca, Agra-Kooijman, Deña M, Martı́nez-Felipe, Alfonso, Gao, Min, Storey, John M. D, Kumar, Satyendra, Lavrentovich, Oleg D, Imrie, Corrie T
Format: Journal Article
Language:English
Published: United States American Chemical Society 27-04-2016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The liquid crystal nonsymmetric dimer, 1-(4-butoxyazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl) hexane (CB6OABOBu), shows enantiotropic twist–bend nematic, NTB, and nematic, N, phases. The NTB phase has been confirmed using polarized light microscopy, freeze fracture transmission electron microscopy, and X-ray diffraction. The helicoidal pitch in the NTB phase is 18 nm. The NTB–N (TNTBN) and N–I (TNI) transition temperatures are reduced upon UV light irradiation, with the reduction in TNTBN being much larger than that in TNI. An isothermal, reversible NTB–N transition may be driven photochemically. These observations are attributed to a trans–cis photoisomerization of the azobenzene fragment on UV irradiation, with the cis isomers stabilizing the standard nematic phase and the trans isomers stabilizing the NTB phase. The dramatic changes in TNTBN provide evidence that the transition between the normal nematic and twist–bend nematic with spontaneous breaking of chiral symmetry is crucially dependent on the shape of molecular dimers, which changes greatly during the trans–cis isomerization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.5b13331