Discovery and Characterization of Small Molecule Inhibitors of the BET Family Bromodomains

Epigenetic mechanisms of gene regulation have a profound role in normal development and disease processes. An integral part of this mechanism occurs through lysine acetylation of histone tails which are recognized by bromodomains. While the biological and structural characterization of many bromodom...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry Vol. 54; no. 11; pp. 3827 - 3838
Main Authors: Chung, Chun-wa, Coste, Hervé, White, Julia H, Mirguet, Olivier, Wilde, Jonathan, Gosmini, Romain L, Delves, Chris, Magny, Sylvie M, Woodward, Robert, Hughes, Stephen A, Boursier, Eric V, Flynn, Helen, Bouillot, Anne M, Bamborough, Paul, Brusq, Jean-Marie G, Gellibert, Françoise J, Jones, Emma J, Riou, Alizon M, Homes, Paul, Martin, Sandrine L, Uings, Iain J, Toum, Jérôme, Clément, Catherine A, Boullay, Anne-Bénédicte, Grimley, Rachel L, Blandel, Florence M, Prinjha, Rab K, Lee, Kevin, Kirilovsky, Jorge, Nicodeme, Edwige
Format: Journal Article
Language:English
Published: United States American Chemical Society 09-06-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epigenetic mechanisms of gene regulation have a profound role in normal development and disease processes. An integral part of this mechanism occurs through lysine acetylation of histone tails which are recognized by bromodomains. While the biological and structural characterization of many bromodomain containing proteins has advanced considerably, the therapeutic tractability of this protein family is only now becoming understood. This paper describes the discovery and molecular characterization of potent (nM) small molecule inhibitors that disrupt the function of the BET family of bromodomains (Brd2, Brd3, and Brd4). By using a combination of phenotypic screening, chemoproteomics, and biophysical studies, we have discovered that the protein–protein interactions between bromodomains and acetylated histones can be antagonized by selective small molecules that bind at the acetylated lysine recognition pocket. X-ray crystal structures of compounds bound into bromodomains of Brd2 and Brd4 elucidate the molecular interactions of binding and explain the precisely defined stereochemistry required for activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2623
1520-4804
DOI:10.1021/jm200108t