Li Electrochemical Tuning of Metal Oxide for Highly Selective CO2 Reduction
Engineering active grain boundaries (GBs) in oxide-derived (OD) electrocatalysts is critical to improve the selectivity in CO2 reduction reaction (CO2RR), which is becoming an increasingly important pathway for renewable energy storage and usage. Different from traditional in situ electrochemical re...
Saved in:
Published in: | ACS nano Vol. 11; no. 6; pp. 6451 - 6458 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
27-06-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Engineering active grain boundaries (GBs) in oxide-derived (OD) electrocatalysts is critical to improve the selectivity in CO2 reduction reaction (CO2RR), which is becoming an increasingly important pathway for renewable energy storage and usage. Different from traditional in situ electrochemical reduction under CO2RR conditions, where some metal oxides are converted into active metallic phases but with decreased GB densities, here we introduce the Li electrochemical tuning (LiET) method to controllably reduce the oxide precursors into interconnected ultrasmall metal nanoparticles with enriched GBs. By using ZnO as a case study, we demonstrate that the LiET-Zn with freshly exposed GBs exhibits a CO2-to-CO partial current of ∼23 mA cm–2 at an overpotential of −948 mV, representing a 5-fold improvement from the OD-Zn with GBs eliminated during the in situ electro-reduction process. A maximal CO Faradaic efficiency of ∼91.1% is obtained by LiET-Zn on glassy carbon substrate. The CO2-to-CO mechanism and interfacial chemistry are further probed at the molecular level by advanced in situ spectroelectrochemical technique, where the reaction intermediate of carboxyl species adsorbed on LiET-Zn surface is revealed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.7b03029 |