Polycrystalline and Mesoporous 3‑D Bi2O3 Nanostructured Negatrodes for High-Energy and Power-Asymmetric Supercapacitors: Superfast Room-Temperature Direct Wet Chemical Growth

Superfast (≤10 min) room-temperature (300 K) chemical synthesis of three-dimensional (3-D) polycrystalline and mesoporous bismuth­(III) oxide (Bi2O3) nanostructured negatrode (as an abbreviation of negative electrode) materials, viz., coconut shell, marigold, honey nest cross section and rose with d...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces Vol. 10; no. 13; pp. 11037 - 11047
Main Authors: Shinde, Nanasaheb M, Xia, Qi Xun, Yun, Je Moon, Mane, Rajaram S, Kim, Kwang Ho
Format: Journal Article
Language:English
Published: American Chemical Society 04-04-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Superfast (≤10 min) room-temperature (300 K) chemical synthesis of three-dimensional (3-D) polycrystalline and mesoporous bismuth­(III) oxide (Bi2O3) nanostructured negatrode (as an abbreviation of negative electrode) materials, viz., coconut shell, marigold, honey nest cross section and rose with different surface areas, charge transfer resistances, and electrochemical performances essential for energy storage, harvesting, and even catalysis devices, are directly grown onto Ni foam without and with poly­(ethylene glycol), ethylene glycol, and ammonium fluoride surfactants, respectively. Smaller diffusion lengths, caused by the involvement of irregular crevices, allow electrolyte ions to infiltrate deeply, increasing the utility of inner active sites for the following electrochemical performance. A marigold 3-D Bi2O3 electrode of 58 m2·g–1 surface area has demonstrated a specific capacitance of 447 F·g–1 at 2 A·g–1 and chemical stability of 85% even after 5000 redox cycles at 10 A·g–1 in a 6 M KOH electrolyte solution, which were higher than those of other morphology negatrode materials. An asymmetric supercapacitor (AS) device assembled with marigold Bi2O3 negatrode and manganese­(II) carbonate quantum dots/nickel hydrogen–manganese­(II)–carbonate (MnCO3QDs/NiH–Mn–CO3) positrode corroborates as high as 51 Wh·kg–1 energy at 1500 W·kg–1 power and nearly 81% cycling stability even after 5000 cycles. The obtained results were comparable or superior to the values reported previously for other Bi2O3 morphologies. This AS assembly glowed a red-light-emitting diode for 20 min, demonstrating the scientific and industrial credentials of the developed superfast Bi2O3 nanostructured negatrodes in assembling various energy storage devices.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b00260