Covalent Organic Network Membranes with Tunable Nanoarchitectonics from Macrocycle Building Blocks for Graded Molecular Sieving

Traditional piperazine-based polyamide membranes usually suffer from the intrinsic trade-off relationship between selectivity and permeance. The development of macrocycle membranes with customized nanoscale pores is expected to address this challenge. Herein, we introduce 1,4-diazacyclohexane (2N),...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces Vol. 16; no. 3; pp. 4283 - 4294
Main Authors: Liu, Linghao, Du, Jingcheng, Yao, Ayan, Song, Ziye, Sun, Qian, He, Wen, Guan, Jian, Liu, Jiangtao
Format: Journal Article
Language:English
Published: United States American Chemical Society 24-01-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditional piperazine-based polyamide membranes usually suffer from the intrinsic trade-off relationship between selectivity and permeance. The development of macrocycle membranes with customized nanoscale pores is expected to address this challenge. Herein, we introduce 1,4-diazacyclohexane (2N), 1,4,7-triazacyclononane (3N), and 1,4,8,11-tetraazacyclotetradecane (4N) as molecular building blocks to construct the nanoarchitectonics of polyamide membranes prepared from interfacial polymerization (IP). The permeance of covalent organic network membranes follows the trend of 4N-TMC > 3N-TMC > 2N-TMC, while the molecular weight cutoff (MWCO) also follows the same trend of 4N-TMC > 3N-TMC > 2N-TMC, according to their nanopore size of the membranes. The microporosity, orientation, and surface chemistry of covalent organic network membranes can be rationally designed by macrocycle building units. The ordered nanoarchitectonics allows the membranes to attain an excellent performance in graded molecular sieving. Importantly, the novel covalent organic network membranes with tunable nanoarchitectonics prepared from macrocycle building units exhibited high water permeance (32.5 LMH/bar) and retained long-term stability after 100 h of test and bovine serum albumin fouling. These results reveal the enormous potential of 3N-TMC and 4N-TMC membranes in saline textile wastewater treatments and precise molecular sieving.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c17579