Achieving Optical Gain of the CsPbBr3 Perovskite Quantum Dots and Influence of the Variable Stripe Length Method

High-quality inorganic cesium lead halide perovskite quantum dot (CsPbBr3 PQD) thin films were successfully deposited directly from a powdered source and used as an active laser medium following the examination of their distinctive surface and structural properties. To determine the suitability of t...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega Vol. 6; no. 8; pp. 5297 - 5309
Main Authors: Qaid, Saif M. H, Ghaithan, Hamid M, Al-Asbahi, Bandar Ali, Aldwayyan, Abdullah S
Format: Journal Article
Language:English
Published: American Chemical Society 02-03-2021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-quality inorganic cesium lead halide perovskite quantum dot (CsPbBr3 PQD) thin films were successfully deposited directly from a powdered source and used as an active laser medium following the examination of their distinctive surface and structural properties. To determine the suitability of the CsPbBr3 PQDs as an active laser medium, amplified spontaneous emission (ASE) and optical gain properties were investigated under picosecond pulse excitation using the variable stripe length (VSL) method. The thin film of CsPbBr3 PQDs has exhibited a sufficient value of the optical absorption coefficient of ∼0.86 × 105 cm–1 near the band edge and a direct band gap energy E g ∼2.38 eV. The samples showed enhanced emission, and ASE was successfully recorded at a low threshold. The light emitted from the edge was observed near 2.40 and 2.33 eV for the stimulated emission (SE) and ASE regimes, respectively. The nonradiative decay contributes excitons dominant over biexcitons in the sample edge emission above the ASE threshold, making it practical for CsPbBr3 PQDs to be used as optical gain media without undergoing repeated SE processes above the threshold over long periods. A high value of the optical gain coefficient was recorded at 346 cm–1.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c05414