Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine–Tryptophan Crosslink

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products with diverse activities and structures. RiPP classes are defined by the tailoring enzyme, which can introduce a narrow range of modifications or a diverse set of alterations. In the la...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society Vol. 144; no. 39; pp. 17876 - 17888
Main Authors: Clark, Kenzie A., Seyedsayamdost, Mohammad R.
Format: Journal Article
Language:English
Published: American Chemical Society 05-10-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products with diverse activities and structures. RiPP classes are defined by the tailoring enzyme, which can introduce a narrow range of modifications or a diverse set of alterations. In the latter category, RiPPs synthesized by radical S-adenosylmethionine (SAM) enzymes, known as RaS-RiPPs, have emerged as especially divergent. A map of all RaS-RiPP gene clusters does not yet exist. Moreover, precursor peptides remain difficult to predict using computational methods. Herein, we have addressed these challenges and report a bioinformatic atlas of RaS-RiPP gene clusters in available microbial genome sequences. Using co-occurrence of RaS enzymes and transporters from varied families as a bioinformatic hook in conjunction with an in-house code to identify precursor peptides, we generated a map of ∼15,500 RaS-RiPP gene clusters, which reveal a remarkable diversity of syntenies pointing to a tremendous range of enzymatic and natural product chemistries that remain to be explored. To assess its utility, we examined one family of gene clusters encoding a YcaO enzyme and a RaS enzyme. We find the former is noncanonical, contains an iron–sulfur cluster, and installs a novel modification, a backbone amidine into the precursor peptide. The RaS enzyme was also found to install a new modification, a C–C crosslink between the unactivated terminal δ-methyl group of Ile and a Trp side chain. The co-occurrence search can be applied to other families of RiPPs, as we demonstrate with the emerging DUF692 di-iron enzyme superfamily.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.2c06497