Spin-Split Band Hybridization in Graphene Proximitized with α‑RuCl3 Nanosheets

Proximity effects induced in the two-dimensional Dirac material graphene potentially open access to novel and intriguing physical phenomena. Thus far, the coupling between graphene and ferromagnetic insulators has been experimentally established. However, only very little is known about graphene’s i...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 19; no. 7; pp. 4659 - 4665
Main Authors: Mashhadi, Soudabeh, Kim, Youngwook, Kim, Jeongwoo, Weber, Daniel, Taniguchi, Takashi, Watanabe, Kenji, Park, Noejung, Lotsch, Bettina, Smet, Jurgen H, Burghard, Marko, Kern, Klaus
Format: Journal Article
Language:English
Published: American Chemical Society 10-07-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proximity effects induced in the two-dimensional Dirac material graphene potentially open access to novel and intriguing physical phenomena. Thus far, the coupling between graphene and ferromagnetic insulators has been experimentally established. However, only very little is known about graphene’s interaction with antiferromagnetic insulators. Here, we report a low-temperature study of the electronic properties of high quality van der Waals heterostructures composed of a single graphene layer proximitized with α-RuCl3. The latter is known to become antiferromagnetically ordered below 10 K. Shubnikov-de Haas oscillations in the longitudinal resistance together with Hall resistance measurements provide clear evidence for a band realignment that is accompanied by a transfer of electrons originally occupying the graphene’s spin degenerate Dirac cones into α-RuCl3 band states with in-plane spin polarization. Left behind are holes in two separate Fermi pockets, only the dispersion of one of which is distorted near the Fermi energy due to spin selective hybridization with these spin polarized α-RuCl3 band states. This interpretation is supported by our density functional theory calculations. An unexpected damping of the quantum oscillations as well as a zero-field resistance upturn close to the Néel temperature of α-RuCl3 suggest the onset of additional spin scattering due to spin fluctuations in the α-RuCl3.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.9b01691