Precise Tuning of Band Structures and Electron Correlations by van der Waals Stacking of One-dimensional W6Te6 Wires
Stacking of two-dimensional (2D) van der Waals (vdW) atomic sheets has been established as a powerful approach to fabricating new materials with broad versatilities and emergent functionalities. Here we demonstrate a bottom-up approach to fabricating isolated single W6Te6 wires and their lateral ass...
Saved in:
Published in: | Nano letters Vol. 20; no. 12; pp. 8866 - 8873 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
09-12-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stacking of two-dimensional (2D) van der Waals (vdW) atomic sheets has been established as a powerful approach to fabricating new materials with broad versatilities and emergent functionalities. Here we demonstrate a bottom-up approach to fabricating isolated single W6Te6 wires and their lateral assemblies, offering a unique platform for investigating the elegant role of vdW coupling in 1D systems with atomic precision. We find experimentally and theoretically a single W6Te6 wire is a 1D semiconductor with a band gap of ∼60 meV, and a semiconductor-to-metal transition takes place upon interwire vdW stacking. The metallic multiwires exhibit strong Tomonaga–Luttinger liquid characteristics with the correlation parameter g varying from g = 0.086 for biwire to g = 0.136 for six-wire assemblies, all much reduced from the Fermi liquid regime (g = 1). The present study demonstrates wire-by-wire vdW stacking is a versatile means for fabrication of 1D systems with tunable electronic properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.0c03897 |