Paleomagnetism and Cyclostratigraphy of the Middle Ordovician Krivolutsky Suite, Krivaya Luka Section, Southern Siberian Platform: Record of Non-Synchronous NRM-Components or a Non-Axial Geomagnetic Field?

The Middle Ordovician Volginsky and Kirensky fossil zones were sampled in the Krivaya Luka section (Krivolutsky suite) that outcrops along the Lena river in Siberia. The Volginsky and Kirensky zones are coeval to the Llandeilo in the global geologic time scale. The Krivaya Luka section consists of s...

Full description

Saved in:
Bibliographic Details
Published in:Studia geophysica et geodaetica Vol. 47; no. 2; pp. 255 - 274
Main Authors: Rodionov, V P, Dekkers MJ, AN, Khramov, Gurevich EL, Krijgsman, W, Duermeijer CE, Heslop, D
Format: Journal Article
Language:English
Published: Prague Springer Nature B.V 2003
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Middle Ordovician Volginsky and Kirensky fossil zones were sampled in the Krivaya Luka section (Krivolutsky suite) that outcrops along the Lena river in Siberia. The Volginsky and Kirensky zones are coeval to the Llandeilo in the global geologic time scale. The Krivaya Luka section consists of siltstones, clays, sandstones, and limestones, and displays a remarkably distinct sedimentary cyclicity, especially in its reddish middle part.Stepwise thermal demagnetization yields three NRM components. Component A, isolated in the 100—250°C interval can be either normal or reversed. The normal A-component has a direction close to recent local magnetic field. The reversed A-component directions are scattered around a direction close to that of the lower Triassic Siberian traps. Component B has unblocking temperatures that range from 400 to 500°C and is represented mainly by normal polarity directions. The B-component, isolated from rocks of the middle part of the section is of a normal polarity with D = 176.5°, I = 30.0° and a North pole position at 16.2°S, 111.3°E. The other parts of the section are characterized by intermediate B-directions, which resulted possibly by partially overlapping A- and C-components. The highest temperature dual-polarity component C was isolated in the 550—670°C interval, resulting in the detection of two complete polarity zones and three magnetic reversals. The C-component is characterized by the following mean directions: for the reversed component D = 335.7°, I = 6.9°, and for the normal component D = 188.6°, I = 28.0°, which is very close to the normal polarity directions of the B-component. The corresponding paleomagnetic North pole for reversed polarity rocks is 32.6°S, 137°E, which is typical of Middle Ordovician rocks from Siberia – the mean pole for Llanvirn-Llandeilo is 30°S, 136°E (cf. Smethurst et al., 1998) – whereas for normal polarity rocks the pole position 17.2°S, 99.1°E is markedly different. Nevertheless, we assume that the C-component records the ancient geomagnetic field of Ordovician times, even though it does not pass the reversals test. This could be explained by overlapping NRM unblocking temperature spectra for the B and C components. In this case, the paleomagnetic pole positions should be interpreted with some caution.In addition, the section was logged and sampled in detail for cyclostratigraphic purposes. Spectral analysis in the depth domain using the high-field susceptibility as input parameter showed that the observed cyclicity is most likely orbitally forced. Detected spectral peaks (significant at the 95% confidence level) were close to the expected positions of the periodicities of precession, obliquity and eccentricity for the Ordovician. Consequently, the average sediment accumulation rate is estimated at ≈3.5 cm/kyr. Extrapolating this sedimentation rate yields a total duration of at least 1 Myr for the Volginsky fossil zone and 1.2 Myr for the entire Krivaya Luka section.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0039-3169
1573-1626
DOI:10.1023/A:1023767523451