Regulation of Respiratory Pathway and Electron Transport Chain in Relation to Senescence of Postharvest White Mushroom (Agaricus bisporus) under High O2/CO2 Controlled Atmospheres

In order to study the respiration metabolism mechanism based on the generation of adenosine triphosphate (ATP) and reactive oxygen species (ROS) and nitric oxide (NO) by the electron transport chain (ETC) of the white mushroom under high O2/CO2 controlled atmospheres, the treatments of 100% O2, 80%...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry Vol. 65; no. 16; pp. 3351 - 3359
Main Authors: Li, Ling, Kitazawa, Hiroaki, Wang, Xiangyou, Sun, Han
Format: Journal Article
Language:English
Published: American Chemical Society 26-04-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to study the respiration metabolism mechanism based on the generation of adenosine triphosphate (ATP) and reactive oxygen species (ROS) and nitric oxide (NO) by the electron transport chain (ETC) of the white mushroom under high O2/CO2 controlled atmospheres, the treatments of 100% O2, 80% O2 + 20% CO2, 60% O2 + 40% CO2, and 40% O2 + 60% CO2 at 2 ± 1 °C were employed and natural air was used as the control. ATP and energy charge can maintain the membrane integrity and function, life activities, and physicochemical reactions of higher plants. The results showed that the 80% O2 + 20% CO2 treatment inhibited the respiration rate, embden-meyerhof-parnas or glycolysis pathway, and ROS and NO contents. It significantly delayed the reduction of the ATP content and energy charge level, tricarboxyfic-acid-cycle and cytochrome pathway proportion, and their key enzymes activity and gene expression. It also maintained a high phosphopentose pathway and moderate alternative pathway. Results indicated that the 80% O2 + 20% CO2 prolonged the storage time of mushrooms to 24 days and retarded the senescence through retaining the higher energy, suppressing the ROS contents, enhancing the endurance capability in adversity, and regulating the respiration pathways and ETC metabolism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.6b05738